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Extracting equations of motion from superconducting circuits
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Alternative computing paradigms open the door to exploiting recent innovations in computational hardware
to probe the fundamental thermodynamic limits of information processing. One such paradigm employs super-
conducting quantum interference devices (SQUIDs) to execute classical computations. This, though, requires
constructing sufficiently complex superconducting circuits that support a suite of useful information processing
tasks and storage operations, as well as understanding these circuits’ energetics. First-principles circuit design
leads to prohibitive algebraic complications when deriving the effective equations of motion—complications that
to date have precluded achieving these goals, let alone doing so efficiently. We circumvent these complications
by (i) specializing our class of circuits and physical operating regimes, (ii) synthesizing existing derivation
techniques to suit these specializations, and (iii) implementing solution-finding optimizations which facilitate
physically interpreting circuit degrees of freedom that respect physically grounded constraints. This leads to
efficient and practical circuit prototyping, as well as accessing scalable circuit architectures. The analytical
efficiency is demonstrated by reproducing the potential energy landscape generated by a SQUID. We then show
how inductively coupling two SQUIDs produces a device that is capable of executing two-bit computations via
its composite potential energy landscape. More generally, the synthesized methods detailed here provide a basis
for constructing universal logic gates and investigating their thermodynamic performance.

DOI: 10.1103/PhysRevResearch.7.013014

I. INTRODUCTION

All computation is physical. To effect information process-
ing, one approach entails a sequence of stochastic transfor-
mations that systematically manipulate a system’s potential
energy landscape [1,2]. Reliable computing, in particular,
then requires stable memory states physically supported by a
system’s information-bearing degrees of freedom [3]. Energy
minima on the landscape provide this dynamical stability.
Computation, then, consists of externally controlling the cre-
ation, destruction, and location of energy minima. From this
perspective, a device’s time-dependent potential energy sur-
face guides the emergence of its computational capabilities.

Exploring a superconducting circuit’s ability to perform
computational operations in this way involves understanding
the device’s energetics and subsequent dynamical equations of
motion [4–8]. Success in using this approach to design candi-
date devices, though, requires rapidly determining if a given
circuit construction is capable of carrying out computations.
This requirement demands a framework that can efficiently
derive a circuit’s equations of motion. To accomplish this, we
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synthesize several previous approaches, specializing them to
a class of circuits of practical interest. The result is a method-
ology for generating a readily interpretable Lagrangian and
associated equations of motion for a given circuit in terms of
its classical degrees of freedom.

The framework’s success is demonstrated through two
examples. First, we efficiently reproduce the Lagrangian
of a superconducting quantum interference device (SQUID)
[4,5,9–11], which has been used to perform one-bit compu-
tations [3,9,12–14], in Sec. IV A. Then we derive the circuit
Lagrangian of a device created by inductively coupling two
SQUIDs in Sec. IV B; the device can be used to execute a
range of two-bit classical computations. We outline how com-
putations are carried out with these devices in the Appendix.

II. RELATED WORK

The following synthesizes methods from Refs. [15–18];
its foundations build on Refs. [15,16], which introduced a
network-theoretic approach to electrical circuit analysis. This
approach is advantageous because solely using Kirchoff’s
laws becomes more inconvenient and cumbersome as the
number of components and loops in a circuit increases [19].
Further advancing the network theory approach to avoid these
complications, Ref. [17] introduced an elegant technique for
multiloop circuits to find irrotational degrees of freedom by
rotating into a reference frame that can simplify a given cir-
cuit’s behavior; this method has recently been experimentally
verified [20]. However, it considered only the circuit’s quan-
tum Hamiltonian for investigating time-dependent quantities,
such as the transition probabilities between energy eigen-
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states. This departs from our goals. Additionally, Ref. [17]
restricted each circuit loop to have at most one inductor: If
this condition is not met, then Ref. [17] finds a continuum
of coordinate rotations that can be accessed. In the following
we eschew this restriction and investigate circuits that contain
more than one inductor in a loop. To address the continuum of
possible rotations, we establish guidelines for finding suitable
coordinate rotations and eliminate cyclic degrees of freedom
after the circuit Lagrangian is obtained.

Here we use the resistive capacitive shunted junction
(RCSJ) model for each Josephson junction (JJ). Due to this,
the dissipative dynamics arising from finite-valued direct cur-
rent (dc) resistances must be accounted for. To do this, we
rely on Ref. [18]’s method that uses the Rayleigh dissipation
function [21] to model the circuit’s resistive shunts.

Several alternative approaches are available to analyze
circuit behaviors in the quantum regime. One such pro-
cedure employs number-phase quantization [22,23], which
does not use a network-theoretic approach. Simulations of
the quantum dynamics of similar circuits are detailed in
Ref. [24]. This all noted, though the SQUIDs employed
here are often the basis for quantum computing devices,
we concentrate on their behavior in the classical regime
to understand their information-bearing degrees of freedom
[10,12]. This also greatly facilitates follow-on investigations
of their far-from-equilibrium thermodynamic performance.
An alternative approach to superconducting circuit analysis
with magnetic flux is to consider charge in a loop [25].
However, previous works [12,15,17,26] showed that consid-
ering magnetic flux provides more convenience for circuit
control analysis. Due to this, we ground this work in a
flux-focused interpretation. A generalized approach to the
techniques implemented in Ref. [17] considers arbitrary cir-
cuit geometries and electromagnetic fields to construct a
Hamiltonian [27]. However, the goal of this work is to advance
the network-theoretic approach to superconducting circuits
taken by Refs. [15–18] to rapidly and directly characterize
candidate superconducting circuit designs. Due to this, a first-
principles framework will not be employed here.

III. SUPERCONDUCTING CIRCUIT ANALYSIS

First, we obtain the equations of motion for a given circuit.
Then, we show how to find coordinate transformations that
produce readily interpretable equations of motion in Langevin
form.

A. Circuit equations of motion

Following Ref. [15], we define a branch to be a partic-
ular circuit element, whose time-dependent branch flux is
defined by:

φb = φb(t )

:=
∫ t

−∞
dt ′ vb(t ′).

This is related to the branch voltage vb(t ), the instantaneous
voltage across the circuit element, and the reduced branch flux
ϕb = 2πφb/�0, where �0 is the flux quantum.

Before proceeding, several assumptions need to be ad-
dressed. To begin, all branches within a circuit correspond
to either a JJ or an inductor. Corresponding variables are
subscripted with a J or L, respectively. All JJs are described by
the RCSJ model [28,29], which is characterized by a critical
current Ic [7], capacitance CJ , and dc resistance R. Following
Refs. [15,17,19], each inductive branch is modeled by an
inductance L in parallel with a parasitic capacitance CL.

Suppose a circuit is constructed with n JJs and m inductors
for a total of N = n + m branches. The branch flux vec-
tor �b := (φJ1 · · · φJnφL1 · · · φLm )T compactly represents all
circuit branch fluxes. When computing the potential and equa-
tions of motion, we refer to the truncated branch flux vectors
�bJ

:= (φJ1 · · ·φJn )T and �bL
:= (φL1 · · · φLm )T.

The energy stored in the capacitive components is [15]

LT = 1
2 �̇T

b C�̇b, (1)

where the overdot ( ˙ ) indicates a time derivative and the
capacitance matrix is written as:

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

CJ1 · · · CJ1Jn CJ1L1 · · · CJ1Lm
...

. . .
...

...
...

...

CJnJ1 · · · CJn CJnL1 · · · CJnLm

CL1J1 · · · CL1Jn CL1 · · · CL1Lm
...

...
...

...
. . .

...

CLmJ1 · · · · · · · · · · · · CLm

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

Here Cpi represents the self-capacitance of component p
of index i, while Cpiq j represents the cross-capacitance be-
tween pi and another component q of index j, all for p, q ∈
{J, L} with p �= q and j �= i. This said, we assume that all
cross-capacitances are negligible, resulting in all nondiagonal
elements being zero valued. Following Ref. [17], we assume
that the parasitic capacitance of the inductive branches CL to
be vanishingly small, and we keep CL as an auxiliary variable
rather than setting it to zero to preserve the invertibility of C.
Nonideal branches can be taken into account in an experimen-
tal setting [19]; one way to do this is to instantiate nonzero
values for CL.

Together, this yields:

C := diag (CJ1 , . . . ,CJn ,CL1 , . . . ,CLm ).

Since we assume that all branches are either inductors
or JJs, the energy stored in the inductive elements can be
calculated using only �bL . The m × m inductance matrix L
denotes the circuit’s linear inductances, with diagonal entries
corresponding to self-inductances Li and off-diagonal entries
corresponding to the mutual inductive coupling −Mi j between
Li and Lj �=i. The energy stored in the inductive components is
given by [15]:

LL = 1
2�T

bL
L−1�bL . (3)

Up to a constant, the JJ potential energy contribution is [15]

LJ = −
n∑

i=1

Ei cos

(
2π

�0
�bJ i

)
. (4)
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Here Ei = Ici(�0/2π ) is the Josephson energy of the ith JJ in a
circuit, which is further characterized by its critical current Ici.

Equations (3) and (4) together give the circuit’s conserva-
tive potential energy LV := LJ + LL. Given a physical circuit
consisting of inductors and JJs as described above, the circuit
Lagrangian L := LT − LV is, up to a constant:

L = 1

2
�̇T

b C�̇b − 1

2
�T

bL
L−1�bL +

n∑
i=1

Ei cos

(
2π

�0
�bJ i

)
.

(5)

The nonconservative dissipation from the finite JJ resistive
shunts are taken into account by the Rayleigh dissipation
function D and further incorporated into the Euler-Lagrange
equations of motion [18,21] in terms of a generalized coordi-
nate qi, as:

d

dt

∂L
∂ q̇i

= ∂L
∂qi

− ∂D
∂ q̇i

, (6)

with

D :=
n∑

i=1

1

2Ri
(φ̇Ji )

2. (7)

D accounts for the dissipated power in each JJ branch due to
its shunt resistance Ri in terms of its branch flux φJi . To obtain
this relation in matrix form, we first let:

D = diag(RJ1 , . . . , RJn ).

Then, the dissipation function reads:

D = 1
2 �̇T

bJ
D−1�̇bJ . (8)

To conclude, we add the phenomenological contribution of
the dc resistances’ thermal noise current to the equations of
motion via:

d

dt

∂L
∂ q̇i

= ∂L
∂qi

− ∂D
∂ q̇i

+ ηi(t ), (9)

in which ηi(t ) is nonzero for the JJ branches only. One com-
mon method of modeling ηi(t ) is a Langevin treatment [10],
in which we consider them to be statistically independent of
each other, delta correlated over time, and determined by the
fluctuation-dissipation theorem through the relation:

〈ηi(t )η j (t
′)〉 = 2kBT

Ri
δi jδ(t − t ′).

B. Determining interpretable coordinates

Despite the fact that Eq. (6) marginally accommodates the
circuit’s topology, it does not account for fluxoid quantization
conditions [15,30]. These require that the sum of the branch
fluxes around any loop equals the external flux threading the
loop. As a result, while there may appear to be N = n + m
degrees of freedom in the Lagrangian, there are only N − F
degrees of freedom in a circuit with F independent loops—
i.e., loops that contain no other loops—threaded by external
fluxes.

In view of this, the external flux vector �x := (φx1 · · · φxF )T

is defined to cast fluxoid quantization into matrix form [17]:

�x = R�b.

The F × N matrix R is constructed in such a way that its
elements Ri j satisfy the following criteria: Let Li denote the
ith loop threaded by the external flux �xi that may contain
branch flux φ j . Then:

Ri j :=
⎧⎨
⎩

+1 φ j ∈ Li same orientation as �xi,

−1 φ j ∈ Li opposite orientation as �xi, and
0 φ j /∈ Li.

Finally, the circuit’s degrees of freedom are defined as �̃ :=
(φ̃1 · · · φ̃N−F )T [17]. Generally, these are a to-be-determined
linear combination of the branch fluxes represented by the
(N − F ) × N matrix M:

�̃ = M�b.

Furthermore, due to fluxoid quantization, no more than N − F
degrees of freedom in the circuit are expected. The quan-
tization conditions are included by employing the N × 1
augmented flux vector �̃+ and the N × N augmented matrix
M+ [17]:

�̃+ :=
(

�̃

�x

)
,

M+ :=
(

M
R

)
.

Note that the branch flux vector and the augmented flux
vector are directly related to each other through M+ by:

�̃+ = M+�b. (10)

With this, the circuit Lagrangian and associated equations of
motion can be written in terms of �̃+ by substituting �b =
M−1

+ �̃+ into Eq. (5) and Eq. (6), respectively. Specifically,
to find the circuit’s Lagrangian in terms of �̃+, M+ must be
invertible. Provided that the columns of M are chosen to be
linearly independent of each other and of the columns of R,
the nonsingularity of M+ is guaranteed.

However, ambiguity remains in defining the elements of
M. Following Ref. [17], these degrees of freedom are deemed
irrotational by ensuring that they satisfy the following con-
straint:

RC−1MT = 0. (11)

This guarantees that the Lagrangian, when written in terms of
�̃+, does not depend on �̇x. Due to this, �̃ is referred to as
the irrotational flux vector, and �̃+ is the augmented irrota-
tional flux vector. In addition, Eq. (11) allows the equations of
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motion to be of Langevin form, further enabling thermody-
namical analyses of the circuit’s degrees of freedom—the
subject of a sequel.

However, even after enforcing the irrotational constraint,
there is still additional freedom in defining M. To address this,
we turn to the kinetic energy term:

LT = 1
2 �̇T

b C�̇b (12)

= 1
2

˙̃�
T

+(M−1
+ )TCM−1

+
˙̃�+

= 1
2

˙̃�
T

+Ceff
˙̃�+ , (13)

in which Ceff is the effective capacitive matrix. With Eq. (13)
in mind, recall that the goal is to obtain an easily interpretable
Lagrangian and corresponding equations of motion for a given
circuit. A diagonal Ceff allows for a straightforward interpre-
tation of LT as the kinetic energy in both the �b and the �̃

bases. In other words, the task is to find solutions of M that
yield a diagonal Ceff .

We now present a set of guidelines for the elements of M
that yield a diagonal Ceff . We note here that for circuits with
more than one independent loop, these guidelines will yield a
diagonal Ceff only when m � F . After detailing these guide-
lines, we discuss their implications and explain how failing to
satisfy m � F leads to a nondiagonal Ceff—i.e., generating a
less interpretable circuit Lagrangian and equations of motion.

(1) The first n rows of M can each contain up to n nonzero
entries corresponding to the n JJ coefficients of M�b, whose
magnitudes are equivalent in this work. The other m inductive
elements of M—corresponding to the inductive coefficients
in each of these rows—will either be zero or proportional
to CL/CJ ; for the latter case, their magnitudes are chosen to
satisfy Eq. (11). Once this constraint is satisfied, the limit
CL/CJ → 0 is taken.

(2) When m − F > 0, the last m − F rows of M will
each contain up to m nonzero entries corresponding to the
m inductive flux coefficients of M�b: In each of these rows,
the nonzero entries should be given magnitudes that satisfy
Eq. (11). Meanwhile, each row’s n JJ coefficients should have
zero-valued entries.

Importantly, linear independence between rows must be
maintained when implementing both these conditions.

To briefly illustrate guideline (1), one possible realization
is that in each of the n rows, every JJ coefficient takes on a
nonzero value only once, while all other JJ coefficients are
zero. If each nonzero value is unity, then this is equivalent
to a simple permutation between branch and irrotational flux
coordinates.

Guideline (2) stems from a mismatch between the number
of loops and inductors. For example, if m = 2 and F = 1 such
that m − F = 1—i.e., there is one loop that contains more
than one inductor—then this requires setting all JJ coefficients
to zero for one solution of Eq. (11). This reflects the overde-
termination of the additional inductor’s behavior in the circuit.
Consequently, one cyclic coordinate will appear in the circuit
Lagrangian; this can be eliminated through determining its
equation of motion and subsequently rewriting it in terms of
noncyclic irrotational degrees of freedom. Sections IV A and
IV B demonstrate this procedure. Note that if m − F = 0, then
guideline (2) has no effect.

FIG. 1. A SQUID with N = 5 and F = 2. Slight adjustments are
made to the physical construction of the circuit compared to Ref. [5].

Once the elements of M are determined, the dynamical
degrees of freedom are interpreted as the irrotational degrees
of freedom that are not cyclic [21]. Numerically, there are
N − F − (m − F ) = n of them, as there will be N − F irrota-
tional flux coordinates with m − F expected to be cyclic. For
a multiloop circuit, i.e., F > 1, a diagonal Ceff can only be
found when there are at least as many irrotational degrees of
freedom as JJs. In light of this, when dealing with multiloop
circuits, we specialize to circuits that satisfy N − F − n � 0.
Equivalently, we can say that the number of inductors in
a multiloop circuit containing both JJs and inductors must
satisfy m � F .

An example where m − F < 0 leads to a nondiagonal Ceff

can be found in the circuit in Sec. V B of Ref. [17], since
the authors do not include an inductor in their F = 2 circuit.
On the one hand, this means m = 0 � 2, i.e., a violation of the
guidelines, resulting in a less-interpretable circuit Lagrangian.
On the other hand, in Ref. [20], m = 1 while F = 1, which
satisfies m � F ; this led to experimentally verifying both the
method of finding irrotational flux degrees of freedom and the
implementation of the guidelines for their application of using
their circuit construction to investigate energy eigenstates with
their circuit’s Hamiltonian.

IV. EXAMPLE SQUID DESIGNS

Now, we illustrate the procedures described above by
working out two examples. Section IV A derives the circuit
Lagrangian and equations of motion of a SQUID that contains
two loops constructed by composing two well known SQUID
designs: One loop containing one inductor and one Josephson
junction—known as a radio-frequency SQUID [31–34]—
while the other loop has two inductors and two Josephson
junctions—known as a direct-current SQUID [6,33,35]. In
Sec. IV B, we derive the potential of a device composed of
two of these SQUIDs via mutual inductive coupling. Notably,
the potential energy landscape for each example device can
be readily used for classical information processing—see the
Appendix for a brief overview.

A. SQUID

We first consider a circuit whose names and constructions
span multiple use cases over a number of decades. Figure 1
displays a circuit whose original name was the variable β

radio-frequency SQUID [4,5,10] and was later known as
the compound Josephson junction radio-frequency SQUID
[11,36]. The device’s primary use cases involved investigating
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macroscopic quantum phenomenon, which deviates funda-
mentally from our goals. Applications that utilize the quantum
flux parametron (QFP) [9,13,14,37] align more closely with
our goals—employing superconducting devices for classical
information processing—although the QFP construction and
methods of operation differ from that of Refs. [4,5,10]. With
this considered, we refer to the circuit in Fig. 1 as a SQUID.

The goal is to reproduce the Lagrangian of the circuit
shown in Fig. 1—whose design is detailed in Ref. [5]—using
the methods detailed in Secs. III A and III B.

To accomplish this, we first begin writing out the flux
vectors:

�b = (
φJ1 φJ2 φL φl1 φl2

)T
, (14)

�bJ = (
φJ1 φJ2

)T
, (15)

�bL = (
φL φl1 φl2

)T
, (16)

�̃+ = (
φ̃1 φ̃2 φ̃3 φx1 φx2

)T
. (17)

With every branch orientation in Fig. 1 pointing upwards,
fluxoid quantization gives:

R =
(

1 0 −1 1 0
−1 1 0 −1 1

)
,

where each row’s entries correspond to the column orientation
of (J1, J2, L, l1, l2), and each row coincides with the external
flux loops (φx1 , φx2 ), respectively. Next, the capacitance ma-
trix is written as:

C−1 = diag(C−1
J1

,C−1
J2

,C−1
L ,C−1

l1
,C−1

l2
).

To satisfy Eq. (11), let:

MT =

⎛
⎜⎜⎜⎜⎝

M11 M21 M31

M12 M22 M32

M13 M23 M33

M14 M24 M34

M15 M25 M35

⎞
⎟⎟⎟⎟⎠.

Then, with the assumption that Cl := Cl1 = Cl2 = CL and
CJ := CJ1 = CJ2 , we enforce Eq. (11); Each column of MT

satisfies:

CMi1 = Mi3 − Mi4 (18)

C(Mi2 − Mi1 ) = Mi4 − Mi5, (19)

with C := Cl/CJ and i = 1, 2, 3. From here, we use the guide-
lines described in Sec. III B to obtain a diagonal Ceff . This is
achieved first via guideline (1) for the first n = 2 rows of M
and guideline (2) for the last m − F = 1 row of M. We then
write a subset of the solution space of Eqs. (18) and (19) into

the augmented matrix:

M+ =
(

M
R

)

=

⎛
⎜⎜⎜⎜⎝

1/2 1/2 C/4 −C/4 −C/4
−1 1 0 C −C
0 0 1 1 1
1 0 −1 1 0

−1 1 0 −1 1

⎞
⎟⎟⎟⎟⎠, (20)

We expect there to be N − F = 3 irrotational degrees of free-
dom with m − F = 1 of them being cyclic once the circuit
Lagrangian L is found. Next, taking the limit C → 0 and then
inverting M+ yields:

M−1
+ =

⎛
⎜⎜⎜⎜⎝

1 −1/2 0 0 0
1 1/2 0 0 0

2/3 0 1/3 −2/3 −1/3
−1/3 1/2 1/3 1/3 −1/3
−1/3 −1/2 1/3 1/3 2/3

⎞
⎟⎟⎟⎟⎠, (21)

which aids in computing the effective capacitive matrix from
Eq. (13) as:

Ceff =

⎛
⎜⎜⎜⎜⎝

2CJ 0 0 0 0
0 CJ/2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠,

which is diagonal as expected due to following guidelines (1)
and (2).

As there are no mutual inductance couplings, the induc-
tance matrix is

L =
⎛
⎝L 0 0

0 l1 0
0 0 l2

⎞
⎠.

Recalling Eq. (10) and writing the circuit Lagrangian from
Eq. (5) in terms of irrotational branch fluxes, produces:

L = CJ

2

(
2 ˙̃φ

2

1 + 1

2
˙̃φ

2

2

)
− 1

9L

(
2φ̃1 + φ̃3 − 2φx1 − φx2

)2

− 1

9l1

(
−φ̃1 + 3

2
φ̃2 + φ̃3 + φx1 − φx2

)2

− 1

9l2

(
−φ̃1 − 3

2
φ̃2 + φ̃3 + φx1 + 2φx2

)2

+ E2+1 cos ϕ̃1 cos
ϕ̃2

2
− E2−1 sin ϕ̃1 sin

ϕ̃2

2
, (22)

where E2±1 = EJ2 ± EJ1 .

The Lagrangian is independent of ˙̃φ3 indicating that it is,
as expected, a cyclic degree of freedom: It can be elimi-
nated by computing the Euler-Lagrange equation of motion
and substituting. For ease of calculation, we use standard
assumptions about the circuit inductance parameters from
Ref. [5], l := l1 = l2 	 L. With these assumptions, the Euler-
Lagrange equations yield φ̃3 = φ̃1 − φx1 − φx2/2 which we
then substitute into L. A map between the circuit flux
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variables in Eq. (22) and those from Ref. [5] can then be
identified as:

φ̃1 = φ, (23)

φ̃2 = φdc, (24)

φx1 = φx − 1
2φxdc, and (25)

φx2 = φxdc. (26)

Making these substitutions into Eq. (22) yields a Lagrangian
L that matches that of Ref. [5] with the preceding variable
substitutions:

L = LT − LSQUID (27)

= CJ

2

(
2φ̇2 + 1

2
φ̇2

dc

)
− 1

2L
(φ − φx)2 − 1

4l
(φdc − φxdc)2

+ E2+1 cos ϕ cos
ϕdc

2
− E2−1 sin ϕ sin

ϕdc

2
.

The goal is to now obtain the full Langevin equation of mo-
tion in Eq. (9) for the circuit in Fig. 1. Since we wrote the
circuit Lagrangian in Eq. (27) in terms of the coordinates
φ and φdc, we now need to transform the dissipative contri-
bution in Eq. (8) into the irrotational flux basis. Assuming
both JJ shunts have a dc resistance of R, we have D−1 =
diag(1/R, 1/R). This leads to:

D = 1

2
�̇T

bJ
D−1�̇bJ

= 1

2R

(
φ̇2

J1
+ φ̇2

J2

)
. (28)

Now, we use M−1
+ from Eq. (21) to write the branch fluxes

in terms of irrotational coordinates with the relation �̇b =
M−1

+
˙̃�+ from Eq. (10):

φ̇J1,2 = ˙̃φ1 ∓ 1
2

˙̃φ2 = φ̇ ∓ 1
2 φ̇dc, (29)

where the last equality was obtained using Eqs. (23) and (24).
Further substituting this into the dissipation function yields:

D = 1

R

(
φ̇2 + 1

4
φ̇2

dc

)
. (30)

By using Eq. (9), we can write the Langevin equation of
motion in terms of the dynamical variables φ and φdc:

2CJ φ̈ = − 1

L
(φ − φx) − Ic2+c1 sin ϕ cos

ϕdc

2

− Ic2−c1 cos ϕ sin
ϕdc

2
− 2

R
φ̇ + η(t ), (31)

CJ

2
φ̈dc = − 1

2l
(φdc − φxdc) − Ic2+c1 cos ϕ sin

ϕdc

2

− Ic2−c1 sin ϕ cos
ϕdc

2
− 1

2R
φ̇dc + ηdc(t ). (32)

B. Inductively coupled SQUIDs

For our final example, consider inductively coupling two
SQUIDs through L1 and L2 via the mutual inductance cou-
pling constant M := M12 = M21, shown in Fig. 2. Using the

FIG. 2. Two SQUIDs inductively coupled via M: A supercon-
ducting device that supports two-bit classical computations through
the manipulation of its potential energy landscape.

methods described in Secs. III A and III B, as well as the
results from Sec. IV A, allows for rapidly deriving its potential
in a more interpretable way.

The choice of branch orientation for the circuit in Fig. 2 is
represented by:

R =

⎛
⎜⎜⎝

1 0 0 0 −1 0 1 0 0 0
−1 1 0 0 0 0 −1 1 0 0
0 0 1 0 0 −1 0 0 1 0
0 0 −1 1 0 0 0 0 −1 1

⎞
⎟⎟⎠,

in which each row’s elements coincide with the column
orientation (J1, J2, J3, J4, L1, L2, l1, l2, l3, l4), each row
corresponds to the external flux loop (φ1x, φ1xdc, φ2x, φ2xdc),
and each branch orientation of the upper (lower) SQUID
points left (right). Using the irrotational constraint
RC−1MT = 0, we find that the elements of M need to
satisfy:

CMi1 = Mi5 − Mi7

C(Mi2 − Mi1) = Mi7 − Mi8
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CMi3 = Mi6 − Mi9

C(Mi4 − Mi3 ) = Mi9 − Mi10.

Taking a lesson from the single SQUID case, and after taking
C → 0, our choice of M and R leads to:

M+ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/2 1/2 0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0 0
0 0 1/2 1/2 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0
0 0 0 0 0 1 0 0 1 1

R

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

whose inverse is:

M−1
+ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1/2 0 0 0 0 0 0 0 0
1 1/2 0 0 0 0 0 0 0 0
0 0 1 −1/2 0 0 0 0 0 0
0 0 1 1/2 0 0 0 0 0 0

2/3 0 0 0 1/3 0 −2/3 −1/3 0 0
0 0 2/3 0 0 1/3 0 0 −2/3 −1/3

−1/3 1/2 0 0 1/3 0 1/3 −1/3 0 0
−1/3 −1/2 0 0 1/3 0 1/3 2/3 0 0

0 0 −1/3 1/2 0 1/3 0 0 1/3 −1/3
0 0 −1/3 −1/2 0 1/3 0 0 1/3 2/3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We then eliminate the cyclic degrees of freedom φ̃5 and φ̃6.
Following the single SQUID case detailed in Sec. IV A, the
map between our flux variables and those of Ref. [5] is as
follows:

φ̃i = φ j,

φ̃i+1 = φ jdc,

φxi = φ jx − 1

2
φ jxdc, and

φxi+1 = φ jxdc.

Here the index i corresponds to either the ith dynamical degree
of freedom or the ith external flux, while the index j aligns
with the flux in the jth SQUID, for which i = 1, 3 and j =
1, 2, respectively.

Next, the inductive contribution to the potential, when tak-
ing L := L1 = L2 and l := l1 = l2 = l3 = l4, is found by first
writing:

L =

⎛
⎜⎜⎜⎜⎜⎜⎝

L −M 0 0 0 0
−M L 0 0 0 0

0 0 l 0 0 0
0 0 0 l 0 0
0 0 0 0 l 0
0 0 0 0 0 l

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Then, subsequently taking its inverse gives:

L−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1/Lα μ/Lα 0 0 0 0
μ/Lα 1/Lα 0 0 0 0

0 0 1/l 0 0 0
0 0 0 1/l 0 0
0 0 0 0 1/l 0
0 0 0 0 0 1/l

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where Lα = αL, α = 1 − μ2, and μ = M/L.
With this, the potential is then:

LV = −E2+1 cos ϕ1 cos
ϕ1dc

2
+ E2−1 sin ϕ1 sin

ϕ1dc

2

− E4+3 cos ϕ2 cos
ϕ2dc

2
+ E4−3 sin ϕ2 sin

ϕ2dc

2

+ 1

4l
(φ1dc − φ1xdc)2 + 1

4l
(φ2dc − φ2xdc)2

+ 1

2Lα

(φ1 − φ1x)2 + 1

2Lα

(φ2 − φ2x)2

+ μ

Lα

(φ1 − φ1x)(φ2 − φ2x). (33)

If we assume small coupling by keeping only linear terms
in μ, then L−1

α → L−1, resulting in Eq. (33) simplifying to
a sum of two SQUIDs potential contributions and a mutual
inductance coupling LM.I.:

LV = LSQUID-1 + LSQUID-2 + LM.I., (34)

in which LM.I. = μ(φ1 − φ1x)(φ2 − φ2x)/L. This Lagrangian
can be used in much the same way as that in Eq. (27) to obtain
the full equations of motion through Eq. (9).

V. CONCLUSION

We introduced a method that enables exploring the clas-
sical informational processing properties of a candidate
superconducting circuit through understanding the circuit’s
energetics and subsequent dynamics. Through examples, we
demonstrated the analytical efficiency of the method by repro-
ducing the equations of motion for a SQUID that implements
single-bit computations [12], as well as a more complicated
device that supports two-bit computations.
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This is the first effort in a series on physically realizable
classical computing. In point of fact, the coupled SQUIDs
shown in Fig. 2 also support the information processing be-
havior exhibited by a Szilard engine [1,38,39]. Follow-on
efforts explore the dynamical and thermodynamic properties
of these circuits and implement universal gates—e.g., NAND
and Fredkin.
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APPENDIX: COMPUTING WITH POTENTIAL
ENERGY LANDSCAPES

Consider a potential energy landscape, generated by a
physical substrate, that contains energy minima and is con-
nected to a thermal environment that introduces damping
and noise into the landscape’s dynamics. The minima are
separated by energy barriers whose heights are substantially
larger than the thermal energy kBT . The thermal environment
quickly induces distributions of microstates to settle into local
equilibria in the phase space regions surrounding the minima.
Noise perturbs the microstates within these wells; however, it
is unlikely to drive the microstates between these respective
regions on a timescale that scales exponentially with the en-
ergy barrier height. Thus, the energy barriers prevent mixing
between these wells except on these very long timescales. As
a result, the minima serve to support long-lived mesoscopic
system states—metastable memory states. Manipulating them
with the potential’s dynamics corresponds to information pro-
cessing.

Armed with the potential energy surfaces corresponding to
Eqs. (27) and (34), we can choose parameter values which
give rise to controllable metastable memory states; Fig. 3 dis-
plays these landscapes. The reasoning behind these choices, as
well as an outline for how one-bit and two-bit computations
are performed via external circuit parameter modifications,
are detailed here in the Appendix.

1. Double well potential

To carry out one-bit computations with Eq. (27)—which
is generated by the single SQUID in Fig. 1—we make the
following choices in line with the superconducting circuit
literature [5,12,40]: E2+1 = 1.05 × 10−21 J, while E2−1 = 0.
The latter assumption gives symmetry to the potential. We
also set L = 230 pH [40].

After implementing these selections, Eq. (27) produces the
potential shown in Fig. 3(a). Here the potential has neutral
external parameter values, i.e., ϕxdc = ϕx = 0. The potential

(a)

(b)

FIG. 3. Potential energy landscapes generated by parameter
values specifically chosen for the application of performing compu-
tations. (a) The double well potential—a landscape representing one
bit of information—which can be generated by Eq. (27). By changing
the value of ϕx and ϕxdc, one-bit computations can be carried out
[12,26]. (b) The quadruple well potential generated by Eq. (34).
Modifying μ, ϕix, and ϕixdc, for i = 1, 2, can lead to performing
two-bit computations.

contains two stable energy minima separated by a large energy
barrier—i.e., two metastable memory states. We choose to
assign computational memory states to each minima based on
their location with respect to the ϕ axis:

state =
{

0 if ϕ < 0,

1 if ϕ > 0.
(A1)

Double well potentials provide a platform for study-
ing one-bit operations; for example, Landauer [3] in 1961
used it to study the minimum heat dissipation due to
irreversible information erasure. Previous works have inves-
tigated SQUID-generated double well potentials for their
nonequilibrium thermodynamic properties [4,10]; one-bit era-
sure operations [12]; one-bit swaps [26]; and other classical
information processing applications [9,14,37], including at
the microprocessor scale [13].
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2. Quadruple well potential

One way of carrying out two-bit computations with the
potential in Eq. (34) is to reduce it to an effective two-
dimensional surface of interest. Accomplishing this can be
done by making the following assumptions that are analo-
gous to the one-bit case in Sec. A 1: First, E2+1 = E4+3 =
1.05 × 10−21 J [40], while E2−1 = E4−3 = 0. Importantly, we
assume l 	 L = 230 pH; this assumption means that changes
in ϕixdc will be reflected in ϕidc on short enough timescales for
i = 1, 2. Because of this, we assume ϕidc = ϕixdc, and Eq. (34)
is reduced to the effective two-dimensional potential energy
surface in the ϕ1–ϕ2 plane shown in Fig. 3(b). Here the exter-
nal parameter values are zero-valued, i.e., ϕ1xdc = ϕ2xdc = 0
and μ = 0. This potential contains four stable wells that can
each be assigned a computational memory state—00, 01, 10,

and 11. The ordering of these memory states in the potential
is arbitrarily chosen by a minimum’s location with respect to
the ϕ1–ϕ2 axis:

first (second) bit =
{

0 if ϕ1 [ϕ2] < 0,

1 if ϕ1 [ϕ2] > 0.
(A2)

By varying the values of M, ϕix, and ϕixdc for which
i = 1, 2, we can process that information—using the dynam-
ics of the Euler-Lagrange equation of motion via Eq. (9)
to implement two-bit logic gates. Note that while we
considered M to be a tunable coupling constant, the de-
tails of its construction—a SQUID coupler—are detailed in
Refs. [36,41,42]. The coupler’s equations of motion could be
accounted for within the complete device construction if its
dynamics become important in future investigations.
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